

Executive Summary

- Wide-area micro-simulation is an important planning and design tool for visualization and analysis
- TransModeler, specifically, micro-simulates bicycles rigorously, integrating state-of-the-art research on bicycles' traffic dynamics

Outline

- Outputs of micro-simulation
- Role of micro-simulation
- TransModeler for micro-simulation
- TransModeler for bicycle micro-simulation

<section-header><section-header><section-header><list-item><list-item><list-item><list-item><list-item>

<section-header><section-header><list-item><list-item><list-item><list-item>

Micro-Simulation for Analysis

<section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item>

Micro-Simulation for Visualization

Outline

- Outputs of micro-simulation
- Role of micro-simulation
 - Transportation Modeling: Travel Demand vs. Micro
- Micro-simulation as a tool for analysts
- TransModeler for micro-simulation
- TransModeler for bicycle micro-simulation

Outline

- Outputs of micro-simulation
- Role of micro-simulation
 - Transportation Modeling: Travel Demand vs. Micro
 - Micro-simulation as a tool for analysts
- TransModeler for micro-simulation
- TransModeler for bicycle micro-simulation

Micro-Simulation Modeling

<section-header><section-header><list-item><list-item><list-item>

TransModeler's GIS platform

- Bring in parcel data, land use, bodies of water, georeferenced aerial images, extrude building footprints in 3D
 - Reproduce existing and build geometry accurately
 - Integrate all of your geospatial data and insights
- Use digital elevation map (DEM) data to set segment grades
 - To say the least, hills are important to cyclists

C	Dutline	
•	Outputs of micro-simulation Role of micro-simulation TransModeler for micro-simulation - GIS platform - Traffic Micro-simulation - Trip-based demand TransModeler for bicycle micro-simulation	
steri	www.cali	iper.com

Agents in traffic, on their on trips, interact with the road, the traffic control, and each other

Impact of grad	e on maximum a	cceleration (ft/	's^2)		30.50
· -		•			
(i) (i)	W	3% Grade	0	0	@
-					
			Eff	ect on M	av Snee
uau, me n	anne conti	or, and e	Eff	ect on M	ax. Spee
ivau, inc ii	anne contr	or, and e	Each UEff	ect on M	ax. Spee
ide		2 to 0 % (mob)		ect on M	ax. Spee
MPR (lbs/hp)	Grade < -2 % (mph) 140.0	-2 to 0 % (mph)	0 to 2 % (mph) 120.0	ect on M + 2 to 4 % (mph) 110.0	ax. Spee ↑ + ◎ ▲ i Grade > 4 % (mph 100
(Jau , the the state of the st	Grade < -2 % (mph) 140.0 90.0	-2 to 0 % (mph) 130.0 85.0	0 to 2 % (mph) 120.0 75.0	ect on M + 2 to 4 % (mph) 110.0 60.0	ax. Spee ↑ + ⊗ ▲ i Grade > 4 % (mph 100. 55.
MPR (lbs/hp) 25 197 247	Grade < -2% (mph) 140.0 90.0 70.0	-2 to 0 % (mph) 130.0 85.0 55.0	0 to 2 % (mph) 120.0 75.0 45.0	ect on M + 2 to 4 % (mph) 110.0 60.0 35.0	ax. Spee ↑ + ⊗ ▲ i Grade > 4 % (mph 100. 55. 25.
MPR (lbs/hp) 25 197 247 329	Grade < -2% (mph) 140.0 90.0 70.0 35.0	-2 to 0 % (mph) 130.0 85.0 55.0 25.0	0 to 2 % (mph) 120.0 75.0 45.0 20.0	ect on M + 2 to 4 % (mph) 110.0 60.0 35.0 15.0	ax. Spee ↑ + ⊗ ▲ i Grade > 4 % (mph 100. 55. 25. 10.

12.0
11.0
11.0
10.0

Agents in traffic, on their on trips, interact with the road, the traffic control, and each other

<section-header><list-item><list-item><list-item><list-item>

<section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

Bicycles on the GIS Platform

Bicycles on the GIS Platform

<section-header>

<section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

- Lateral Movement Within a Lane
- Stopped Gaps
- Desired Speed
- Following Distance & Acceleration
- Lane Changing Gap Acceptance
- Critical Distance

	vement Within a l	_ane)			
Bicycles and Motor	ayo rcycles - Lateral Movement Ito Move Laterally within Lanes	<i>w</i> _{<i>i</i>} =	$L + \frac{1}{1}$	- e ^{-β1} + e ^{-β1}	$\frac{v_i}{v_i}(U-L)$)
	1	1.	+	† + ¢		Γ
	Outside Lane	Lower	Upper 4 00	8eta 0.2500	Gamma 10.0	
ВК		0.30	2.50	0.2000	10.0	
					05.0	
Uistance to start	shifting when passing in the same lane (i	IT]			85.0	
Mavimum secret	distance for faster vehicles behind (9)				38.4	

- Lateral Movement Within a Lane
- Stopped Gaps

Non-motorized vehicle in front 4.0 2. Motorized vehicle in front 6.0 2.	Scenario	Mean (ft)	Standard deviation (f
Motorized vehicle in front 6.0 2.	Non-motorized vehicle in front	4.0	2.
	Motorized vehicle in front	6.0	2.
			Je and the second
	0	a	a a

- Lateral Movement Within a Lane
- Stopped Gaps
- Desired Speed
- Following Distance & Acceleration
- Lane Changing Gap Acceptance
- Critical Distance

Class	Lower (ft) Upper ((t)	Beta Gamma (%
ВК	0.6	5 25.	00 0.9	5000 25.
, Maximum speed pa Maximum speed pa Distance Headway	assing non-motorize assing non-motorize Thresholds and Va	d vehicle in the same lan d vehicle in the next lane ariance of Acceleration	e (mph) : (mph)	+ + + @ #
Percentage (%)	Distance (%)	Decelerating (f/s^2)	Cruising (f/s^2)	Accelerating (f/s^2)
30.0) 5.0	-0.10	0.00	0.10
50.0) 5.0	-0.10	0.00	0.10
20.0	5.0	-0.10	0.00	0.10

Bicycles and Moto	rcycles - Forward Mo	vement				
Non-motorized V	ehicles and Following	Distance				
				+++@#		
	Class Configuration of acceleration Beta Gamma (%)					
• BK prof	BK profile used when attempting 0.5000 25.0					
l to a	to achieve desired following					
Maxim dista	ance				25.0	
 Maximum speed 	ip olize	u venicie in trie riext larie	(mpri)			
Distance Headv	vayThresn. dVa	ariance of Acceleration				
				+++0#		
Percentage (%) Distance (%)	Decelerating (f/s^2)	Cruising (f/s^2)	Accelerating (f/s^2)		
	0.0 5.0	-0.10	0.00	0.10		
5	0.0 5.0	-0.10	0.00	0.10	and the second	
	110 50	-0.10	0.00	U.1U		

- Lateral Movement Within a Lane
- Stopped Gaps
- Desired Speed
- Following Distance & Acceleration
- Lane Changing Gap Acceptance
- Critical Distance

Diove		roffia	Mioro	Cim	ation
БІС.VС	$\mathbf{H}\mathbf{e}$			SHIIU	
		lanio		o i i a	ation

- Lateral Movement Within a Lane
- Stopped Gaps

	NMV/Lead*	NMV/Lag*	Motorized/Lead	Motorized/Lag
Minimum (ft)	3.28	4.92	6.56	13.12
Follower slower (/fps)	0.061	0.046	0.046	0.030
Follower faster (/fps)	0.107	0.137	0.152	0.305
Follower speed (/fps)	0.076	0.091	0.152	0.305
Sigma (ft)	3.281	4.921	3.281	4.921

 Lateral Movement Within a L 	ane
---	-----

• Stopped Gaps

	NMV/Lead*	NMV/Lag*	Motorized/Lead	Motorized/Lag
Minimum (ft)	3.28	4.92	6.56	13.12
Follower slower (/fps)	0.061	0.046	0.046	0.030
Follower faster (/fps)	0.107	0.137	0.152	0.305
Follower speed (/fps)	0.076	0.091	0.152	0.305
Sigma (ft)	3.281	4.921	3.281	4.921
	accou locatio	nt the type	akes into s, speeds, a vehicles in th	and set

Со	onclusi	on		
			Bicycle M	ode Share
			0%	3%
8	ycle ructure	No Build		
1	Bic	Build		
ar N	The second	K	8	

